ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

Вниз   Решение


В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2458]      



Задача 33135

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.
Прислать комментарий     Решение


Задача 35012

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 7,8

Известно, что  35! = 10333147966386144929*66651337523200000000.  Найдите цифру, заменённую звездочкой.

Прислать комментарий     Решение

Задача 35805

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.

Прислать комментарий     Решение

Задача 35818

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?

Прислать комментарий     Решение

Задача 35822

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 2
Классы: 6,7

а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх?
б) Тот же вопрос, если монет 20, а разрешается переворачивать по 19.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2458]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .