|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Одиннадцати мудрецам завязывают глаза и надевают каждому на голову колпак одного из 1000 цветов. После этого им глаза развязывают, и каждый видит все колпаки, кроме своего. Затем одновременно каждый показывает остальным одну из двух карточек – белую или чёрную. После этого все должны одновременно назвать цвет своих колпаков. Удастся ли это? Мудрецы могут заранее договориться о своих действиях (до того, как им завязали глаза); мудрецам известно, каких 1000 цветов могут быть колпаки. В равнобедренном треугольнике ABC сторона AC = b, стороны BA = BC = a, AM и CN – биссектрисы углов A и C. Найдите MN. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]
Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!.
Цифры 1, 2, ..., 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.
Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?
Доказать, что при натуральном n число nm + 1 будет составным хотя бы для одного натурального m.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|