ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На бумаге "в клеточку" нарисован выпуклый многоугольник M, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри M, равна сумме длин горизонтальных отрезков линий сетки внутри M.

Вниз   Решение


В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром.
Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 151]      



Задача 108806

Темы:   [ Линейные зависимости векторов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны a . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 109366

Темы:   [ Правильный тетраэдр ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной треугольной призмы, все рёбра которой равны 1.
Прислать комментарий     Решение


Задача 109379

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной треугольной пирамиды со стороной основания a и высотой h .
Прислать комментарий     Решение


Задача 109380

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной треугольной пирамиды со стороной основания a и боковым ребром b .
Прислать комментарий     Решение


Задача 109389

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды со стороной основания a и высотой h .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 151]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .