|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников? В треугольнике ABC из вершины C проведены биссектрисы внутреннего и внешнего углов. Первая биссектриса образует со стороной AB угол, равный 40°. Какой угол образует с продолжением стороны AB вторая биссектриса? Внутри треугольника ABC взята точка K. Известно, что
AK = 1, KC = Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 4260]
Можно ли выложить в ряд все 28 косточек домино согласно правилам игры так, чтобы на одном конце ряда оказалось 5, а на другом 6 очков?
На вешалке висят 20 платков. 17 девочек по очереди подходят к вешалке, и каждая либо снимает, либо вешает ровно один платок.
Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 4260] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|