ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?

Вниз   Решение


Последовательность чисел a1, a2, a3,...задается условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$        (n $\displaystyle \geqslant$ 0).

Докажите, что
а) эта последовательность неограничена;
б) a9000 > 30;
в) найдите предел $ \lim\limits_{n\to\infty}^{}$$ {\dfrac{a_n}{\sqrt[3]n}}$.

ВверхВниз   Решение


Саша разрезал шахматную доску 8× 8 по границам клеток на 30 прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.


Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 369]      



Задача 21984

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 6,7,8

Пятеро молодых рабочих получили на всех зарплату - 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Прислать комментарий     Решение


Задача 88178

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 5,6,7

Обязательно ли среди двадцати пяти "медных" монет (т.е. монет достоинством 1, 2, 3, 5 коп.) найдётся семь монет одинакового достоинства?
Прислать комментарий     Решение


Задача 103987

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 5,6,7

a) Докажите, что в любой футбольной команде есть два игрока, которые родились в один и тот же день недели.
b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день.
Прислать комментарий     Решение


Задача 21970

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 5,6,7

В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?
Прислать комментарий     Решение


Задача 21971

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 369]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .