ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

Вниз   Решение


В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AA1 < AB < BC. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 35769

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 7,8,9

Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

Прислать комментарий     Решение

Задача 21993

Темы:   [ Произведения и факториалы ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

Цифры 1, 2, ..., 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Прислать комментарий     Решение

Задача 65959

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?

Прислать комментарий     Решение

Задача 67147

Тема:   [ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10,11

При каком наибольшем натуральном $m$ число $m! \cdot 2022!$ будет факториалом натурального числа?
Прислать комментарий     Решение


Задача 86476

Темы:   [ Произведения и факториалы ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 7,8,9

Доказать, что при натуральном n число  nm + 1  будет составным хотя бы для одного натурального m.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .