ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что если 0 < x < 1 и

$\displaystyle \alpha$ = 2arctg $\displaystyle {\frac{1+x}{1-x}}$,    $\displaystyle \beta$ = arctg $\displaystyle {\frac{1-x^2}{1+x^2}}$,

то $ \alpha$ + $ \beta$ = $ \pi$.

Вниз   Решение


В городе Цветочном n площадей и m улиц  (mn + 1).  Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города.

ВверхВниз   Решение


К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A, вторично пересекает w1 и w2 в точках и L соответственно (A лежит между K и L ). Прямые KC и LD пересекаются в точке P. Докажите, что PB – симедиана треугольника KPL (прямая, симметричная медиане относительно биссектрисы).

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 61176

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 10,11

Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения  

Прислать комментарий     Решение

Задача 61077

Тема:   [ Тригонометрическая форма. Формула Муавра ]
Сложность: 3
Классы: 9,10,11

Докажите, что если  x + iy = (s + it)n,  то  x2 + y2 = (s2 + t2)n.

Прислать комментарий     Решение

Задача 61084

Тема:   [ Тригонометрическая форма. Формула Муавра ]
Сложность: 3
Классы: 9,10,11

Докажите, что если  |z| = 1  (z ≠ –1),  то для некоторого действительного t справедливо равенство  z = (1 + it)(1 – it)–1.

Прислать комментарий     Решение

Задача 61088

 [Формулы Муавра]
Тема:   [ Тригонометрическая форма. Формула Муавра ]
Сложность: 3
Классы: 9,10,11

  Докажите две формулы Муавра. Первая из них дает правило возведения в степень комплексного числа, представленного в тригонометрической форме
z = r(cos φ + isin φ):   zn = rn(cos nφ + isin nφ)  (n ≥ 1).
  Вторая позволяет вычислять все n корней n-й степени из данного числа:  

Прислать комментарий     Решение

Задача 61107

Тема:   [ Тригонометрическая форма. Формула Муавра ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство  

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .