|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите наибольшее натуральное n, при котором n200 < 5300. С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.) Найдите площадь треугольника, если две стороны его соответственно равны 27 и 29, а медиана, проведённая к третьей, равна 26.
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 123]
Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
На консультации было 20 школьников и разбиралось 20 задач. Оказалось, что каждый из школьников решил две задачи и каждую задачу решили два школьника. Докажите, что можно так организовать разбор задач, чтобы каждый школьник рассказал одну из решённых им задач и все задачи были разобраны.
В компании из семи мальчиков каждый имеет среди остальных не менее трёх братьев. Докажите, что все семеро – братья.
Во время шахматного турнира, несколько игроков сыграли нечётное количество партий. Докажите, что число таких игроков чётно.
Школьник сказал своему приятелю Вите Иванову:
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 123] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|