ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Найдите все значения а, для которых выражения   а +   и   1/а   принимают целые значения.

Вниз   Решение


a) Двое показывают карточный фокус. Первый снимает пять карт из колоды, содержащей 52 карты (предварительно перетасованной кем-то из зрителей), смотрит в них и после этого выкладывает их в ряд слева направо, причём одну из карт кладёт рубашкой вверх, а остальные – картинкой вверх. Второй участник фокуса отгадывает закрытую карту. Докажите, что они могут так договориться, что второй всегда будет угадывать карту.

б) Второй фокус отличается от первого тем, что первый участник выкладывает слева направо четыре карты картинкой вверх, а одну не выкладывает. Могут ли и в этом случае участники фокуса так договориться, чтобы второй всегда угадывал невыложенную карту?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 35218

Тема:   [ Алгебра и арифметика (прочее) ]
Сложность: 2
Классы: 7,8

Даны 10 различных положительных чисел. В каком порядке их нужно обозначить a1, a2, ... , a10, чтобы сумма a1+2a2+3a3+...+10a10 была наибольшей?
Прислать комментарий     Решение


Задача 35221

Тема:   [ Алгебра и арифметика (прочее) ]
Сложность: 2+
Классы: 8,9

Можно ли из последовательности 1, 1/2, 1/3, ... выбрать (сохраняя порядок) сто чисел, из которых каждое, начиная с третьего, равно разности двух предыдущих?
Прислать комментарий     Решение


Задача 35403

Тема:   [ Алгебра и арифметика (прочее) ]
Сложность: 3-
Классы: 8,9,10

Дано 100 положительных чисел, сумма которых равна S. Известно, что каждое из чисел меньше, чем S/99. Докажите, что сумма любых двух из этих чисел больше, чем S/99.
Прислать комментарий     Решение


Задача 35688

Темы:   [ Алгебра и арифметика (прочее) ]
[ Последовательности (прочее) ]
Сложность: 3-
Классы: 8,9

Найдите значение выражения 1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.
Прислать комментарий     Решение


Задача 35251

Тема:   [ Алгебра и арифметика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Существуют ли такие натуральные числа $m$ и $n$, что $m^2+n$ и $n^2+m$ одновременно являются квадратами?
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .