ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Даны две окружности и точка. Построить отрезок, концы которого лежат на данных окружностях, а середина — в данной точке.

Вниз   Решение


Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 66748

Темы:   [ Алгебра и арифметика (прочее) ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?

Прислать комментарий     Решение

Задача 67447

Тема:   [ Алгебра и арифметика (прочее) ]
Сложность: 4
Классы: 8,9,10,11

По кругу стоят 50 чисел (необязательно целых). Известно, что произведение любых 25 чисел отличается от произведения 25 остальных не более чем на 2. Докажите, что какие-то два соседних числа отличаются не более чем на 2.
Прислать комментарий     Решение


Задача 67509

Тема:   [ Алгебра и арифметика (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Даны $2N$ действительных чисел. Известно, что как ни разбей их на две группы по $N$ чисел, произведение чисел первой группы отличается от произведения чисел второй группы не более чем на $2$. Верно ли, что как ни расставь эти числа по кругу, найдутся два соседних числа, различающихся не более чем на $2$, если а) $N=50$; б) $N=25$?
Прислать комментарий     Решение


Задача 66735

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?

Прислать комментарий     Решение

Задача 66907

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Соколов А.

Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .