ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Имеются три пробирки, вместимостью 100 миллилитров каждая. Первые две пробирки имеют риски, одинаковые на обеих пробирках. Возле каждой риски надписано целое число миллилитров, которое вмещается в часть пробирки от дна до этой риски (см. рисунок).

Изначально первая пробирка содержит 100 миллилитров пива, а остальные две пусты. Требуется написать программу, которая выясняет, можно ли отделить в третьей пробирке один миллилитр пива, и если да, то находит минимально необходимое для этого число переливаний. Пиво можно переливать из одной пробирки в другую до тех пор, пока либо первая из них не станет пустой, либо одна из пробирок не окажется заполненной до какой-либо риски.



Входные данные

В первой строке входного файла содержится число рисок N (1 ≤ N ≤ 20), имеющихся на каждой из первых двух пробирок. Затем в порядке возрастания следуют N целых чисел V1 , ..., VN (1 ≤ Vi ≤ 100), приписанных рискам. Последняя риска считается сделанной на верхнем крае пробирок (VN = 100).

Выходные данные

В первой строке выходного файла должна содержаться строка «YES», если в третьей пробирке возможно отделить один миллилитр пива, и «NO» – в противном случае. В случае ответа «YES» во вторую строку необходимо вывести искомое количество переливаний.

Пример входного файла

4
13 37 71 100

Пример выходного файла

YES
8

Вниз   Решение


Найдите наибольшее значение выражения

x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$.

ВверхВниз   Решение


Пусть P = (p1, ... , Pn ) является перестановкой чисел 1, 2, ..., n. Таблицей инверсии перестановки P называют последовательность T = (t1, ..., tn), в которой ti равно числу элементов перестановки Р, стоящих (в Р) левее числа i и больших i. Например, для перестановки Р = ( 5, 9,1, 8, 2, 6, 4, 7, 3 ) чисел 1, ... , 2, ... , 9 таблица инверсий Т = ( 2, 3, 6, 4, 0, 2, 2, 1, 0 ). Написать программу, которая по заданной таблице инверсии восстанавливает перестановку.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 116791

Тема:   [ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3
Классы: 5,6,7

Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

Прислать комментарий     Решение

Задача 116556

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3-
Классы: 9,10

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Прислать комментарий     Решение

Задача 37549

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 6,7,8

Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).

Прислать комментарий     Решение

Задача 116043

Темы:   [ Индукция (прочее) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3
Классы: 8

Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении  n : (n + 1),  где n – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?

Прислать комментарий     Решение

Задача 35651

Темы:   [ Покрытия ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .