|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Хорды $A_1A_2$ и $B_1B_2$ пересекаются в точке $D$. Прямая $A_1B_1$ пересекает серединный перпендикуляр к отрезку $DD'$, где точка $D'$ инверсна к $D$, в точке $C$. Докажите, что $CD\parallel A_2B_2$. Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении a : (1 – a) по весу, где 0 < a < 1. Верно ли, что на любом промежутке длины 0,001 из интервала (0, 1) найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов? В правильной треугольной пирамиде SABC ( S – вершина) AB=4 , высота SO пирамиды равна |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]
В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну.
В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.
На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека объявляются друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?
В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.
На доске n×n расставлено n – 1 фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|