ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник.

Вниз   Решение


а) Пусть P — точка пересечения прямых AB и A1B1. Докажите, что если среди точек A, B, A1, B1 и P нет совпадающих, то общая точка описанных окружностей треугольников PAA1 и PBB1 является центром поворотной гомотетии, переводящей точку A в A1, а точку B в B1, причем такая поворотная гомотетия единственна.
б) Докажите, что центром поворотной гомотетии, переводящей отрезок AB в отрезок BC, является точка пересечения окружности, проходящей через точку A и касающейся прямой BC в точке B, и окружности, проходящей через точку C и касающейся прямой AB в точке B.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 87170

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Составьте параметрические уравнения прямой, проходящей через точку M(-2;0;3) перпендикулярно плоскости, проходящей через точки A(-3;0;1) , P(-1;2;5) и Q(3;-4;1) .
Прислать комментарий     Решение


Задача 87172

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 8,9

Составьте параметрические уравнения прямой пересечения плоскостей 2x - y - 3z + 5 = 0 и x + y - 2 = 0 .
Прислать комментарий     Решение


Задача 87192

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите острый угол между плоскостями MNK и NKL .
Прислать комментарий     Решение


Задача 87193

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите угол между прямой MN и плоскостью NKL .
Прислать комментарий     Решение


Задача 87201

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 10,11

Даны точки A(-3;0;1) и D(1;3;2) . Составьте параметрические уравнения прямой AD .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .