ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 64626  (#10.1)

Темы:   [ Средние величины ]
[ Делимость чисел. Общие свойства ]
[ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Ученик за одну неделю получил 17 оценок (каждая из них – 2, 3, 4 или 5). Среднее арифметическое этих 17 оценок – целое число.
Докажите, что какую-то оценку он получил не более двух раз.

Прислать комментарий     Решение

Задача 64627  (#10.2)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.

Прислать комментарий     Решение

Задача 64628  (#10.3)

Темы:   [ Классическая комбинаторика (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4-
Классы: 9,10,11

В языке племени АУ две буквы – "a" и "y". Некоторые последовательности этих букв являются словами, причём в каждом слове не меньше одной и не больше 13 букв. Известно, что если написать подряд любые два слова, то полученная последовательность букв не будет словом. Найдите максимальное возможное количество слов в таком языке.

Прислать комментарий     Решение

Задача 64629  (#10.4)

Темы:   [ Признаки подобия ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 10,11

На стороне AB треугольника ABC выбраны точки C1 и C2. Аналогично на стороне BC выбраны точки A1 и A2, а на стороне AC – точки B1 и B2. Оказалось, что отрезки A1B2, B1C2 и C1A2 имеют равные длины, пересекаются в одной точке, и угол между каждыми двумя из них равен 60°. Докажите, что   .

Прислать комментарий     Решение

Задача 64630  (#10.5)

Темы:   [ Теория игр (прочее) ]
[ Кубические многочлены ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

На доске написано уравнение  x³ + *x² + *x + * = 0.  Петя и Вася по очереди заменяют звёздочки на рациональные числа: вначале Петя заменяет любую из звёздочек, потом Вася – любую из двух оставшихся, а затем Петя – оставшуюся звёздочку. Верно ли, что при любых действиях Васи Петя сможет получить уравнение, у которого разность каких-то двух корней равна 2014?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .