ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 116817  (#1)

Темы:   [ Математическая логика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3-
Классы: 8,9

Про группу из пяти человек известно, что:

   Алеша на 1 год старше Алексеева,
   Боря на 2 года старше Борисова,
   Вася на 3 года старше Васильева,
   Гриша на 4 года старше Григорьева,
   а еще в этой группе есть Дима и Дмитриев.

Кто старше и на сколько: Дима или Дмитриев?

Прислать комментарий     Решение

Задача 116818  (#2)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Автор: Жуков Г.

Пусть C(n) – количество различных простых делителей числа n. (Например,  C(10) = 2,  C(11) = 1,  C(12) = 2.)
Конечно или бесконечно число таких пар натуральных чисел  (a, b),  что  a ≠ b  и  C(a + b) = C(a) + C(b)?

Прислать комментарий     Решение

Задача 116819  (#3)

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 8,9

Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

Прислать комментарий     Решение

Задача 116820  (#4)

Темы:   [ Параллелограммы (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно.
Докажите, что прямая KL делит пополам высоту параллелограмма, опущенную из вершины C на AB.

Прислать комментарий     Решение

Задача 116821  (#5)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 8,9

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/20 всех экскурсий.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .