ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Даны две окружности S1, S2 и прямая l. Проведите прямую l1, параллельную прямой l, так, чтобы:
а) расстояние между точками пересечения l1 с окружностями S1 и S2 имело заданную величину a;
б) S1 и S2 высекали на l1 равные хорды;
в) S1 и S2 высекали на l1 хорды, сумма (или разность) длин которых имела бы заданную величину a.

Вниз   Решение


Дан угол ABC и прямая l. Постройте прямую, параллельную прямой l, на которой стороны угла ABC высекают отрезок данной длины a.

Вверх   Решение

Задача 116819
Тема:    [ Инварианты ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?


Решение

Сумма всех чисел таблицы равно числу пар, состоящих из соседних заминированной и незаминированной клеток. При указанной операции эти пары сохраняются, поэтому сумма не меняется.


Ответ

Не может.

Замечания

8-9 кл. – 5 баллов, 10-11 кл. – 4 балла.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2012/13
Номер 34
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
Задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Дата 2012/13
Номер 34
вариант
Вариант осенний тур, базовый вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .