ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116595  (#11.1)

Тема:   [ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9,10

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Прислать комментарий     Решение

Задача 116596  (#11.2)

Темы:   [ Четырехугольная пирамида ]
[ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9,10

Через вершины основания четырёхугольной пирамиды SABCD проведены прямые, параллельные противоположным боковым рёбрам (через вершину A – параллельно SC, и так далее). Эти четыре прямые пересеклись в одной точке. Докажите, что четырёхугольник ABCD – параллелограмм.

Прислать комментарий     Решение

Задача 116597  (#11.3)

Темы:   [ Векторы (прочее) ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9,10

На плоскости нарисованы n > 2 различных векторов  a1, a2, ..., an  с равными длинами. Оказалось, что все векторы  –a1 + a2 + ... + an,
a1a2 + a3 + ... + ana1 + a2 + ... + an–1an   также имеют равные длины. Докажите, что  a1 + a2 + ... + an = 0.

Прислать комментарий     Решение

Задача 116598  (#11.4)

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Автор: Чувилин К.

Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)

Прислать комментарий     Решение

Задача 116599  (#11.5)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 2
Классы: 8,9,10

Докажите, что для любого натурального n выполнено неравенство  (n – 1)n+1(n + 1)n–1 < n2n.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .