|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть x и y – натуральные числа. Рассмотрим функцию f(x, y) = ½ (x + y – 1)(x + y – 2) + y. Докажите, что множеством значений этой функции являются все натуральные числа, причём для любого натурального i = f(x, y) числа x и y определяются однозначно. Докажите, что при простых pi ≥ 5, i = 1, 2, ..., 24, число |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 145]
Входные данные Входной двоичный файл содержит последовательность 32-битовых целых чисел со знаком (File Of LongInt). Выходные данные Выведите в выходной текстовый файл искомое число. Пример входного файла XXYYXYXYXXYY Пример выходного файла 1498962264
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 145] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|