ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 102806  (#14.1)

Тема:   [ Десятичная система счисления ]
Сложность: 2
Классы: 5,6,7

Числа по кругу. Расставьте по кругу числа 14, 27, 36, 57, 178, 467, 590, 2345 так, чтобы любые два соседних числа имели общую цифру.
Прислать комментарий     Решение


Задача 102807  (#14.2)

 [Баба-Яга, Кащей и мухоморы]
Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

Баба-Яга и Кащей собрали некоторое количество мухоморов. Количество крапинок на мухоморах Бабы-Яги в 13 раз больше, чем на мухоморах Кащея, но после того, как Баба-Яга отдала Кащею свой мухомор с наименьшим числом крапинок, на её мухоморах стало крапинок только в 8 раз больше, чем у Кащея. Докажите, что в начале у Бабы-Яги было не более 23 мухоморов.

Прислать комментарий     Решение

Задача 102808  (#14.3)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенство треугольника ]
Сложность: 3
Классы: 7,8

Расстояния до вершин квадрата. Могут ли расстояния от некоторой точки на плоскости до вершин некоторого квадрата быть равными 1, 4, 7 и 8?
Прислать комментарий     Решение


Задача 102809  (#14.4)

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8

На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54.

Прислать комментарий     Решение

Задача 102810  (#14.5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 5,6,7

Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .