ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 557]      



Задача 66356

Темы:   [ Средние величины ]
[ Количество и сумма делителей числа ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке  

Прислать комментарий     Решение

Задача 66359

Темы:   [ Метод координат (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Можно ли на числовой прямой расположить три отрезка чётной длины так, чтобы общие части каждых двух из них были отрезками нечётной длины?

Прислать комментарий     Решение

Задача 66362

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9,10,11

Известно, что в десятичной записи числа 229 все цифры различны. Есть ли среди них цифра 0?

Прислать комментарий     Решение

Задача 78206

Темы:   [ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?

Прислать комментарий     Решение

Задача 86495

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 7,8

Какое наибольшее количество прямоугольников 4*1 можно разместить в квадрате 6*6 (не нарушая границ клеток)?
Прислать комментарий     Решение


Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .