ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Савин А.П.

В таблице
    0 1 2 3 ... 9
    9 0 1 2 ... 8
    8 9 0 1 ... 7
        ...
    1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57139

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла ABC. По какой траектории движется середина этого отрезка?
Прислать комментарий     Решение


Задача 57140

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

Найдите геометрическое место середин хорд данной окружности, проходящих через данную точку.
Прислать комментарий     Решение


Задача 57141

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

Даны две точки A и B. Две окружности касаются прямой AB (одна — в точке A, другая — в точке B) и касаются друг друга в точке M. Найдите ГМТ M.
Прислать комментарий     Решение


Задача 57142

 [Окружность Аполлония]
Темы:   [ ГМТ - окружность или дуга окружности ]
[ Метод координат на плоскости ]
Сложность: 4
Классы: 8,9

На плоскости даны две точки A и B. Найдите ГМТ M, для которых AM : BM = k (окружность Аполлония).
Прислать комментарий     Решение


Задача 57143

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

Пусть S — окружность Аполлония для точек A и B, причем точка A лежит вне окружности S. Из точки A проведены касательные AP и AQ к окружности S. Докажите, что B — середина отрезка PQ.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .