ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



Задача 61244  (#08.083)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Теорема синусов ]
Сложность: 3
Классы: 9,10

Теорема синусов. Докажите, что из равенств

$\displaystyle {\frac{a}{\sin\alpha}}$ = $\displaystyle {\frac{b}{\sin\beta}}$ = $\displaystyle {\frac{c}{\sin\gamma}}$,    $\displaystyle \alpha$ + $\displaystyle \beta$ + $\displaystyle \gamma$ = $\displaystyle \pi$ (8.3)

следует:

a = b cos$\displaystyle \gamma$ + c cos$\displaystyle \beta$,
b = c cos$\displaystyle \alpha$ + a cos$\displaystyle \gamma$,
c = a cos$\displaystyle \beta$ + b cos$\displaystyle \alpha$.
(8.4)


Прислать комментарий     Решение

Задача 61245  (#08.084)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10

Покажите, что из соотношений (8.4) и дополнительных условий 0 < $ \alpha$ < $ \pi$, 0 < $ \beta$ < $ \pi$, 0 < $ \gamma$ < $ \pi$, a > 0, b > 0, c > 0 следуют равенства (8.3 ).

Прислать комментарий     Решение

Задача 61246  (#08.085)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 9,10

Теорема косинусов. Докажите, что соотношения (8.4 ) равносильны системе

a2 = b2 + c2 - 2bc cos$\displaystyle \alpha$,
b2 = a2 + c2 - 2ac cos$\displaystyle \beta$,
c2 = a2 + b2 - 2ab cos$\displaystyle \gamma$,
(8.5)

то есть из существования равенств (8.4 ) вытекает существование равенств (8.5 ) и наоборот.

Прислать комментарий     Решение

Задача 61247  (#08.086)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Теоремы синусов и косинусов для трехгранных углов ]
Сложность: 3+
Классы: 10,11

Теорема синусов и первая теорема косинусов для трехгранного угла. Пусть имеется трехгранный угол с плоскими углами $ \alpha$, $ \beta$, $ \gamma$ и противолежащими им двугранными углами A, B, C. Для него справедлива теорема синусов (8.7 ) и две теоремы косинусов (8.6 ), (8.8) (смотрите ниже). После того, как одна из этих теорем доказана, другие могут быть получены путем алгебраических преобразований. Отвлечемся от геометрической природы задачи и предположим, что просто даны равенства

cos$\displaystyle \alpha$ = cos$\displaystyle \beta$cos$\displaystyle \gamma$ + sin$\displaystyle \beta$sin$\displaystyle \gamma$cos A,
cos$\displaystyle \beta$ = cos$\displaystyle \alpha$cos$\displaystyle \gamma$ + sin$\displaystyle \alpha$sin$\displaystyle \gamma$cos B,
cos$\displaystyle \gamma$ = cos$\displaystyle \alpha$cos$\displaystyle \beta$ + sin$\displaystyle \alpha$sin$\displaystyle \beta$cos C,
(8.6)

и, кроме того, величины $ \alpha$, $ \beta$, $ \gamma$ и A, B, C заключены между 0 и $ \pi$. Докажите, что

$\displaystyle {\frac{\sin A}{\sin \alpha}}$ = $\displaystyle {\frac{\sin B}{\sin 
\beta}}$ = $\displaystyle {\frac{\sin C}{\sin \gamma}}$. (8.7)


Прислать комментарий     Решение

Задача 61248  (#08.087)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Теоремы синусов и косинусов для трехгранных углов ]
[ Формула Герона ]
Сложность: 4
Классы: 10,11

Вторая теорема косинусов для трехгранного угла и аналог формулы Герона. Докажите, что из системы (8.6 ) следуют равенства

cos A = - cos B cos C + sin B sin C cos$\displaystyle \alpha$,
cos B = - cos A cos C + sin A sin C cos$\displaystyle \beta$,
cos C = - cos A cos B + sin A sin B cos$\displaystyle \gamma$,
tg $\displaystyle {\dfrac{A+B+ 
C-\pi}{4}}$ = $\displaystyle \sqrt{\hbox{\rm tg\ }\dfrac{p}{2}\hbox{\rm tg\ }\dfrac{p-\alpha}{2} 
\hbox{\rm tg\ }\dfrac{p-\beta}{2}\hbox{\rm tg\ }\dfrac{p-\gamma}{2}}$,
(8.8)

где 2p = $ \alpha$ + $ \beta$ + $ \gamma$.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .