|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В двух кошельках лежат две монеты, причём в одном кошельке монет вдвое больше, чем в другом. Как такое может быть?
В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части? Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника? Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей? |
Страница: 1 2 >> [Всего задач: 9]
Дети держат в руках флажки. Тех, у кого в обеих руках поровну флажков, в 5 раз меньше, чем тех, у кого не поровну. Когда каждый ребёнок переложил по одному флажку из одной руки в другую, тех, у кого в обеих руках поровну флажков, стало в 2 раза меньше, чем тех, у кого не поровну. Могло ли быть так, что в начале более чем у половины детей в одной руке было ровно на один флажок меньше, чем в другой?
В каждой комнате особняка стояли букеты цветов. Всего было 30 букетов роз, 20 – гвоздик и 10 – хризантем, причём, в каждой комнате стоял хотя бы один букет. При этом ровно в двух комнатах стояли одновременно и хризантемы, и гвоздики, ровно в трёх комнатах – и хризантемы, и розы, ровно в четырёх комнатах – и гвоздики, и розы. Могло ли в особняке быть 55 комнат?
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число.
Страница: 1 2 >> [Всего задач: 9] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|