|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В выпуклом пятиугольнике $ABCDE$ равны углы $CAB$, $BCA$, $ECD$, $DEC$ и $AEC$. Докажите, что середина $BD$ лежит на $CE$. Для игры «Отравленный пирог» используется прямоугольный пирог, разделенный на M «строк» горизонтальными разрезами и на N «столбцов» – вертикальными. Таким образом, пирог должен быть разбит на M × N клеток, правая нижняя из которых «отравлена». Играют двое игроков, ходы делаются по очереди. Каждый ход заключается в том, что игрок выбирает одну из еще не съеденных клеток пирога и съедает все клетки, расположенные левее и выше выбранной (в том числе и выбранную). Проигрывает тот, кто съедает отравленную клетку. Требуется написать программу, которая по заданной игровой позиции
определяет все возможные выигрышные ходы для начинающего в этой позиции. Каждый ход задается парой чисел (i, j), где i – номер (снизу) горизонтального
ряда, а j – номер (справа) вертикального ряда, которому принадлежит
выбранная клетка (1 ≤ i ≤ M, 1 ≤ j ≤ N).
Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади? |
Страница: 1 2 >> [Всего задач: 9]
Докажите, что не существует никакой (даже разрывной) функции y = f(x), для которой f(f(x)) = x² – 1996 при всех x.
Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.
Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади?
а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на
окружности круглого острова. Их связывает плоская сеть дорог, на которых могут
быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются
дороги. На всех участках дорог введено одностороннее движение так, что, выехав
от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть fij означает число различных путей, идущих из порта i в порт j. Докажите неравенство f14f23 ≥ f13f24.
В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.
Страница: 1 2 >> [Всего задач: 9] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|