ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

  Старый сапожник Карл сшил сапоги и послал своего сына Ганса на базар – продать их за 25 талеров. На базаре к мальчику подошли два инвалида (один без левой ноги, другой – без правой) и попросили продать им по сапогу. Ганс согласился и продал каждый сапог за 12,5 талеров.
  Когда мальчик пришёл домой и рассказал всё отцу, Карл решил, что инвалидам надо было продать сапоги дешевле – каждому за 10 талеров. Он дал Гансу 5 талеров и велел вернуть каждому инвалиду по 2,5 талера.
  Пока мальчик искал на базаре инвалидов, он увидел, что продают сладости, не смог удержаться и истратил 3 талера на конфеты. После этого он нашёл инвалидов и отдал им оставшиеся деньги – каждому по одному талеру. Возвращаясь домой, Ганс понял, как нехорошо он поступил. Он рассказал всё отцу и попросил прощения. Сапожник сильно рассердился и наказал сына, посадив его в тёмный чулан.
  Сидя в чулане, Ганс задумался. Получалось, что раз он вернул по одному талеру, то инвалиды заплатили за каждый сапог по 11,5 талеров:
12,5 – 1 = 11,5.  Значит, сапоги стоили 23 талера:  2·11,5 = 23.  И 3 талера Ганс истратил на конфеты, следовательно, всего получается 26 талеров:
23 + 3 = 26.  Но ведь было-то 25 талеров! Откуда же взялся лишний талер?

Вниз   Решение


В наборе несколько гирь, все веса которых различны. Известно, что если положить любую пару гирь на левую чашу, можно весы уравновесить, положив на правую чашу одну или несколько гирь из остальных. Найдите наименьшее возможное число гирь в наборе.

ВверхВниз   Решение


Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

ВверхВниз   Решение


а) Разбейте отрезок  [0, 1]  на чёрные и белые отрезки так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам.
(Приращением многочлена p по отрезку  (a, b)  называется число  p(b) – p(a).)

б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?

 

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 98264  (#1)

Темы:   [ Уравнения в целых числах ]
[ Расстояние между двумя точками. Уравнение сферы ]
[ Рациональные и иррациональные числа ]
[ Сферы (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Рубин А.

Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)

 
Прислать комментарий     Решение

Задача 98265  (#2)

Темы:   [ Раскраски ]
[ Призма (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

При каких n можно раскрасить в три цвета все ребра n-угольной призмы (основания – n-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?

 
Прислать комментарий     Решение

Задача 107786  (#3)

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанный угол, опирающийся на диаметр ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны.

Прислать комментарий     Решение

Задача 98267  (#4)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 
Прислать комментарий     Решение

Задача 98268  (#5)

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10

а) Разбейте отрезок  [0, 1]  на чёрные и белые отрезки так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам.
(Приращением многочлена p по отрезку  (a, b)  называется число  p(b) – p(a).)

б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?

 
Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .