|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с AB. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны. Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки. На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально? Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn}) разрешается получать последовательности
{bn + cn}, б) в) Докажите, что при любом a имеет место неравенство: 3(1 + a² + a4) ≥ (1 + a + a²)². |
Страница: 1 [Всего задач: 4]
Докажите, что при любом a имеет место неравенство: 3(1 + a² + a4) ≥ (1 + a + a²)².
В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.
Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?
Кафельная плитка имеет форму прямоугольного треугольника с катетами 1 дм и 2 дм. Можно ли из 20 таких плиток сложить квадрат?
Страница: 1 [Всего задач: 4] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|