ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

(Сообщил А. Л.Брудно) Прямоугольное поле m×n разбито на mn квадратных клеток. Некоторые клетки покрашены в чёрный цвет. Известно, что все чёрные клетки могут быть разбиты на несколько непересекающихся и не имеющих общих вершин чёрных прямоугольников. Считая, что цвета клеток даны в виде массива типа

array[1..m] of array [ 1..n] of boolean;
подсчитать число чёрных прямоугольников, о которых шла речь. Число действий должно быть порядка mn.

Вниз   Решение


(Для знакомых с основами анализа; сообщил А. Г.Кушниренко) Дополнить алгоритм вычисления значения многочлена в заданной точке по схеме Горнера вычислением значения его производной в той же точке.

ВверхВниз   Решение


Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 79388

Тема:   [ Деление с остатком ]
Сложность: 3
Классы: 7,8,9

Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

Прислать комментарий     Решение

Задача 79389

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9

Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79394

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9

Дано 10 натуральных чисел:  a1 < a2 < a3 < ... < a10.  Доказать, что их наименьшее общее кратное не меньше 10a1.

Прислать комментарий     Решение

Задача 79395

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10

Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79393

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9

В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .