|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Математик с пятью детьми зашёл в пиццерию. Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.
На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы коротких палочек у букв ``Г'' обозначим через A и A'. Длинные палочки разделены на n равных частей точками a1, ..., an - 1; a'1, ..., a'n - 1 (точки деления нумеруются от концов длинных палочек). Проводятся прямые Aa1, Aa2, ..., Aan - 1; A'a Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию. |
Страница: 1 [Всего задач: 5]
В некоторых клетках квадратной таблицы n×n стоят звёздочки. Известно, что если вычеркнуть любой набор строк (только не все), то найдётся столбец ровно с одной невычеркнутой звёздочкой. (В частности, если строки совсем не вычёркивать, то столбец ровно с одной звёздочкой существует.) Доказать, что если вычеркнуть любой набор столбцов (только не все), то найдётся строка ровно с одной невычеркнутой звёздочкой.
Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.
Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а
сумма всех чисел из набора равна 100.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|