|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень. В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз. Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами. |
Страница: 1 [Всего задач: 1]
Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.
Страница: 1 [Всего задач: 1] |
||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|