|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольник вписан параллелограмм со сторонами 3 и 5 и диагональю, равной 6. Найдите стороны треугольника, если известно, что диагонали параллелограмма параллельны боковым сторонам треугольника, а меньшая из его сторон лежит на основании треугольника. Из точки P, расположенной внутри острого угла BAC, опущены перпендикуляры PC1 и PB1 на прямые AB и AC. Докажите, что ∠C1AP = ∠C1B1P. Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Даны 4 точки: A, B, C, D. Найти такую точку O, что сумма расстояний от неё до данных точек минимальна. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
Имеется бесконечная шахматная доска. Обозначим через (a, b) поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля (a, b) может сделать ход на любое из восьми полей: (a ± m, b ± n), (a ± n, b ± m), где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.
6n-значное число делится на 7. Последнюю цифру перенесли в начало. Доказать, что полученное число также делится на 7.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|