|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде. Написать вариант алгоритма Евклида, использующий соотношения
НОД(2a, 2b) = 2·НОД(a,b),
не включающий деления с остатком, а использующий лишь
деление на 2 и проверку чётности. (Число действий
должно быть порядка
log k для исходных данных,
не превосходящих k.)
На окружности взяты точки A, B, C и D. Прямые AB и CD пересекаются в точке M. Докажите, что AC . AD/AM = BC . BD/BM. На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|