ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

Вниз   Решение


Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

ВверхВниз   Решение


Через середину каждой диагонали выпуклого четырехугольника проводится прямая, параллельная другой диагонали. Эти прямые пересекаются в точке O. Докажите, что отрезки, соединяющие точку O с серединами сторон четырехугольника, делят его площадь на равные части.

ВверхВниз   Решение


Даны 2n конечных последовательностей из нулей и единиц, причём ни одна из них не является началом никакой другой. Доказать, что сумма длин этих последовательностей не меньше n . 2n.

ВверхВниз   Решение


На консультации было 20 школьников и разбиралось 20 задач. Оказалось, что каждый из школьников решил две задачи и каждую задачу решили два школьника. Докажите, что можно так организовать разбор задач, чтобы каждый школьник рассказал одну из решённых им задач и все задачи были разобраны.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 77928

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что число    не является кубом никакого целого числа.

Прислать комментарий     Решение

Задача 77930

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Процессы и операции ]
Сложность: 3
Классы: 8,9

На консультации было 20 школьников и разбиралось 20 задач. Оказалось, что каждый из школьников решил две задачи и каждую задачу решили два школьника. Докажите, что можно так организовать разбор задач, чтобы каждый школьник рассказал одну из решённых им задач и все задачи были разобраны.

Прислать комментарий     Решение

Задача 77929

Тема:   [ Необычные построения (прочее) ]
Сложность: 3+
Классы: 8,9

На плоскости даны три точки A, B, C и три угла $ \angle$D, $ \angle$E, $ \angle$F, меньшие 180o и в сумме равные 360o. Построить с помощью линейки и транспортира точку O плоскости такую, что $ \angle$AOB = $ \angle$D, $ \angle$BOC = $ \angle$E, $ \angle$COA = $ \angle$F (с помощью транспортира можно измерять и откладывать углы).
Прислать комментарий     Решение


Задача 77931

Тема:   [ Проективные преобразования плоскости ]
Сложность: 4
Классы: 8,9

Проекцией точки A из точки O на плоскость P называется точка A', в которой прямая OA пересекает плоскость P. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка O не лежит в его плоскости?
Прислать комментарий     Решение


Задача 77932

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Свойства коэффициентов многочлена ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

При делении многочлена  x1951 – 1  на  x4 + x³ + 2x² + x + 1  получается частное и остаток. Найти в частном коэффициент при x14.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .