ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

Вниз   Решение


На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной стороне квадрата.
Найдите величину угла MAK.

ВверхВниз   Решение


Заданы N-вершинный ориентированный граф с двумя выделенными вершинами v1 и v2 и целое число C. Требуется:
1) определить, существует ли в заданном графе путь из вершины v1 в вершину v2, состоящий из C ребер (путь может иметь самопересечения как по вершинам, так и по ребрам);
2) найти минимум функции | X - C |, где X – количество ребер в некотором пути из v1 в v2 .

Входные данные

Первая строка входного файла содержит целое число N – количество вершин в графе (1 ≤ N ≤ 10). В следующих N строках расположена матрица N × N из нулей и единиц, элемент (i, j) которой равен единице, если в графе есть ребро из вершины i в вершину j, и нулю, если такого ребра нет. (Граф может содержать петли, т.е. ребра, идущие из вершины в саму себя). Элементы матрицы во входном файле записаны без разделительных пробелов. 

Наконец, строка N+2 содержит номера вершин v1 и v2 , а строка N+3 – десятичную запись числа C (1 &le C < 1050).

Выходные данные

В первую строку выходного файла выведите ответ на первый пункт задачи: «Yes», если путь длины C существует, и «No», если нет. Во вторую строку запишите ответ на второй пункт задачи. Если ни одного пути из v1 в v2 не существует, ваша программа должна вывести -1.

Пример входного файла

3
010
001
100
1 1
555555555555555555555555555555555

Пример выходного файла

Yes
0

ВверхВниз   Решение


Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 67288  (#1)

Тема:   [ Монотонность, ограниченность ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
Прислать комментарий     Решение


Задача 67289  (#2)

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Глебов А.

Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
Прислать комментарий     Решение


Задача 67290  (#3)

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 4-
Классы: 9,10,11

Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 67291  (#4)

Темы:   [ Последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10,11

Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное количество составных чисел.
Прислать комментарий     Решение


Задача 67292  (#5)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Полиция задержала 50 человек, из которых 35 – преступники, которые говорят, что захотят, а 15 – свидетели, которые всегда говорят правду. Все задержанные знают, кто преступники. Какое наименьшее число человек достаточно выбрать, чтобы спросив потом у каждого, кто именно преступники, по ответам вычислить хотя бы одного преступника?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .