|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд? На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной
стороне квадрата. Заданы N-вершинный ориентированный граф с двумя выделенными вершинами v1 и v2 и целое число C. Требуется: 1) определить, существует ли в заданном графе путь из вершины v1 в вершину v2, состоящий из C ребер (путь может иметь самопересечения как по вершинам, так и по ребрам); 2) найти минимум функции | X - C |, где X – количество ребер в некотором пути из v1 в v2 . Входные данные Первая строка входного файла содержит целое число N – количество вершин в графе (1 ≤ N ≤ 10). В следующих N строках расположена матрица N × N из нулей и единиц, элемент (i, j) которой равен единице, если в графе есть ребро из вершины i в вершину j, и нулю, если такого ребра нет. (Граф может содержать петли, т.е. ребра, идущие из вершины в саму себя). Элементы матрицы во входном файле записаны без разделительных пробелов.
Наконец, строка N+2 содержит номера вершин v1
и v2
, а строка N+3 – десятичную запись числа C (1 &le C <
1050).
Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой. |
Страница: 1 2 >> [Всего задач: 6]
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|