ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Окружность обладает тем свойством, что внутри неё можно двигать правильный треугольник так, чтобы каждая вершина треугольника описывала эту окружность. Найти замкнутую несамопересекающуюся кривую, отличную от окружности, внутри которой также можно двигать правильный треугольник так, чтобы каждая его вершина описывала эту кривую.

Вниз   Решение


Петя написал стозначное число $X$, в записи которого нет нулей. Пятидесятизначное число, образованное первыми пятьюдесятью цифрами числа $X$, Петя назвал головой числа $X$. Оказалось, что число $X$ без остатка делится на свою голову. Сколько нулей в записи частного?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 66759  (#1)

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7

Однажды в город пришёл торговец с зонтиками трёх цветов. Синих зонтиков у него было вдвое меньше, чем жёлтых и красных, красных – втрое меньше, чем жёлтых и синих, а жёлтых зонтиков $45$. Сколько синих и сколько красных зонтиков было у торговца?
Прислать комментарий     Решение


Задача 66760  (#2)

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7,8

Вставьте вместо каждой звездочки цифру так, чтобы произведение трех десятичных дробей равнялось натуральному числу. Использовать ноль нельзя, зато остальные цифры могут повторяться. $${\ast}{,}{\ast} \cdot {\ast}{,}{\ast} \cdot {\ast}{,}{\ast} = {\ast}$$
Прислать комментарий     Решение


Задача 66761  (#3)

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 5,6,7

Если из квадратных плиток, которые отличаются только расцветкой, сложить прямоугольник $3\times 4$, как на рисунке, то целиком в нем поместится $6$ черепашек. А сколько черепашек поместится целиком в составленном таким же образом прямоугольнике $20\times 21$?

Прислать комментарий     Решение

Задача 66762  (#4)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 6,7,8

Петя написал стозначное число $X$, в записи которого нет нулей. Пятидесятизначное число, образованное первыми пятьюдесятью цифрами числа $X$, Петя назвал головой числа $X$. Оказалось, что число $X$ без остатка делится на свою голову. Сколько нулей в записи частного?
Прислать комментарий     Решение


Задача 66763  (#5)

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 6,7,8,9

У золотоискателя есть куча золотого песка массой 37 кг (и больше песка у него нет), двуxчашечные весы и две гири 1 и 2 кг. Золотоискатель умеет делать действия двух типов:

  • уравнивать весы, т.е. если сейчас весы не в равновесии, то он может пересыпать часть песка с одной чаши на другую так, чтобы весы встали в равновесие;
  • досыпать до равновесия, т.е. если сейчас весы не в равновесии, то он может добавить песка на одну из чаш так, чтобы весы встали в равновесие.
  • Конечно, каждое из этих действий он может сделать только если для этого у него хватает песка.

    Как ему за два действия с весами получить кучку, в которой ровно 26 кг песка? Смешать две кучки песка, а также просто ставить что-то на весы действием не считается.

    Прислать комментарий     Решение

    Страница: 1 2 >> [Всего задач: 10]      



    © 2004-... МЦНМО (о копирайте)
    Пишите нам

    Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .