ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Кацыло П.

В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где  n > 3)?

Вниз   Решение


Максимальное время работы на одном тесте: 1 секунда

После того, как к удивлению тетушки Полли, ее забор был покрашен, она поручила Тому Сойеру обновить краску на плитках, которыми был вымощен их квадратный двор. Двор был покрыт N´ N одинаковыми квадратными плитками, каждая из которых когда-то давно была покрашена в один из K цветов (K < N). Краска на плитках потускнела и Тому Сойеру поручили их покрасить, на этот раз в один любой цвет (из тех же К цветов). Покрасить нужно все плитки, в том числе и те, которые уже были покрашены в этот цвет раньше.

Окунув кисть в ведро с краской один раз, можно перекрасить один горизонтальный или вертикальный ряд плиток. Чтобы разнообразить свою работу, Том придумал, что ряд плиток можно красить только цветом, которым на данный момент уже покрашены (старой или новой краской) по крайней мере две плитки выбранного ряда (вертикального или горизонтального). За один раз Том собирается красить допустимым цветом весь ряд целиком, независимо от того, были ли уже перекрашены какие-либо его плитки ранее. Помогите Тому определить, какое минимальное число раз ему придется обмакнуть кисть, чтобы перекрасить все плитки, следуя придуманным правилам, и в какой цвет окажутся окрашены все плитки.

Формат входных данных

В первой строке входного файла b.in записаны через пробел два числа: N - количество плиток в одном ряду (1 < N ≤ 200) и K (1 ≤ K < N). В каждой из следующих N строк записаны N натуральных чисел, обозначающих номера цветов красок, в которые когда-то были выкрашены соответствующие плитки данного горизонтального ряда. Номера цветов - натуральные числа в диапазоне от 1 до K.

Формат выходных данных

В выходной файл b.out выведите два числа: L - какое минимальное число раз придется окунать кисть в ведро с краской, и номер краски С, в которую в результате окажутся перекрашены все плитки двора. Если таких красок может быть несколько, то выведите номер любой из них.

Если перекрасить все плитки, следуя придуманным Томом правилам, нельзя, выведите два раза число 0.

Примеры

b.in

b.out

3 2

1 2 1

2 1 1

1 2 2

4 1

2 1

1 1

1 1

2 1

ВверхВниз   Решение


На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

ВверхВниз   Решение


Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные расстояния между которыми все больше 1.

ВверхВниз   Решение


Автор: Фольклор

Можно ли разрезать равносторонний треугольник на три равных девятиугольника?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 66395  (#7.1)

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

Объем бутылки кваса – 1,5 литра. Первый выпил половину бутылки, второй – треть того, что осталось после первого, третий – четверть оставшегося от предыдущих, и так далее, четырнадцатый – пятнадцатую часть оставшегося. Сколько кваса осталось в бутылке?
Прислать комментарий     Решение


Задача 66396  (#7.2)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

Можно ли внутри выпуклого пятиугольника отметить 18 точек так, чтобы внутри каждого из десяти треугольников, образованных его вершинами, отмеченных точек было поровну?
Прислать комментарий     Решение


Задача 66388  (#7.3)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 5,6,7

Трём мудрецам показали 9 карт: шестерку, семерку, восьмерку, девятку, десятку, валета, даму, короля и туза (карты перечислены по возрастанию их достоинства). После этого карты перемешали и каждому раздали по три карты. Каждый мудрец видит только свои карты. Первый сказал: "Моя старшая карта – валет". Тогда второй ответил: "Я знаю, какие карты у каждого из вас". У кого из мудрецов был туз?
Прислать комментарий     Решение


Задача 66397  (#7.4)

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8

Автор: Пешнин А.

Дан прямоугольный параллелепипед, у которого все измерения (длина, ширина и высота) – целые числа. Известно, что если длину и ширину увеличить на 1, а высоту уменьшить на 2, то объем параллелепипеда не изменится. Докажите, что какое-то из измерений данного параллелепипеда кратно трем.
Прислать комментарий     Решение


Задача 66398  (#7.5)

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Можно ли разрезать равносторонний треугольник на три равных девятиугольника?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .