|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
классы:
|
|||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.) Для n = 1, 2, 3 будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию Найдите все значения x, удовлетворяющие неравенству (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4a – a² < 0 хотя бы при одном значении a из отрезка [–1, 2]. Число N, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3. Каждая из окружностей S1 , S2 и S3 касается внешним образом окружности S (в точках A1 , B1 и C1 соответственно) и двух сторон треугольника ABC (см.рис.). Докажите, что прямые AA1 , BB1 и CC1 пересекаются в одной точке. На диагонали AC вписанного четырёхугольника ABCD взяли произвольную точку P и из неё опустили перпендикуляры PK, PL, PM, PN, PO на прямые AB, BC, CD, DA, BD соответственно. Докажите, что расстояние от P до KN равно расстоянию от O до ML. |
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]
На диагонали AC вписанного четырёхугольника ABCD взяли произвольную точку P и из неё опустили перпендикуляры PK, PL, PM, PN, PO на прямые AB, BC, CD, DA, BD соответственно. Докажите, что расстояние от P до KN равно расстоянию от O до ML.
В треугольнике ABC прямая m касается вписанной окружности ω. Прямые, проходящие через центр I окружности ω и перпендикулярные AI, BI, CI, пересекают прямую m в точках A', B', C' соответственно. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.
Даны два тетраэдра. Ни у одного из них нет двух подобных граней, но каждая грань первого тетраэдра подобна какой-то грани второго.
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|