|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На длинной ленте бумаги выписали все числа от 1 до 1000000 включительно (в некотором произвольном порядке). Затем ленту разрезали на кусочки по две цифры в каждом кусочке. Докажите, что в каком бы порядке ни выписывались числа, на кусочках встретятся все двузначные числа. Докажите, что если отрезок B1C1 антипараллелен стороне BC, то B1C1 Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины. По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков? На левом берегу реки собрались 5 физиков и 5 химиков. Всем надо на правый берег. Есть двухместная лодка. На правом берегу ни в какой момент не могут находиться ровно три химика или ровно три физика (но если человек приплыл к берегу в лодке и, не высаживаясь, уплыл обратно, он на этом берегу не считается). Каким образом им всем переправиться, сделав 9 рейсов направо? |
Страница: 1 2 3 4 >> [Всего задач: 18]
У Винни-Пуха пять друзей, у каждого из которых в домике есть горшочки с медом: у Тигры – 1, у Пятачка – 2, у Совы – 3, у Иа-Иа – 4, у Кролика – 5. Винни-Пух по очереди приходит в гости к каждому другу, съедает один горшочек меда, а остальные забирает с собой. К последнему домику он подошёл, неся 10 горшочков с медом. Чей домик Пух мог посетить первым?
Есть четыре карточки с цифрами: 2, 0, 1, 6. Для каждого из чисел от 1 до 9 можно из этих карточек составить четырёхзначное число, которое кратно выбранному однозначному. А в каком году такое будет в следующий раз?
Мальвина велела Буратино разрезать квадрат на 7 прямоугольников (необязательно различных), у каждого из которых одна сторона в два раза больше другой. Выполнимо ли это задание?
На левом берегу реки собрались 5 физиков и 5 химиков. Всем надо на правый берег. Есть двухместная лодка. На правом берегу ни в какой момент не могут находиться ровно три химика или ровно три физика (но если человек приплыл к берегу в лодке и, не высаживаясь, уплыл обратно, он на этом берегу не считается). Каким образом им всем переправиться, сделав 9 рейсов направо?
В классе учатся 27 человек, но на урок физкультуры пришли не все. Учитель разбил пришедших на две равные по численности команды для игры в пионербол. При этом в первой команде была половина всех пришедших мальчиков и треть всех пришедших девочек, а во второй – половина всех пришедших девочек и четверть всех пришедших мальчиков. Остальные пришедшие ребята помогали судить. Сколько помощников могло быть у судьи?
Страница: 1 2 3 4 >> [Всего задач: 18] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|