|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Назовём девятизначное число красивым, если все его цифры различны. Дан По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились. Сумма девяти различных натуральных чисел равна 200. Всегда ли можно выбрать из них четыре числа так, чтобы их сумма была больше чем 100? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 69]
На плоскости проведены n прямых так, что каждые две пересекаются, но никакие четыре через одну точку не проходят. Всего имеются 16 точек пересечения, причём через 6 из них проходят по три прямые. Найдите n.
Решите систему уравнений:
Сумма девяти различных натуральных чисел равна 200. Всегда ли можно выбрать из них четыре числа так, чтобы их сумма была больше чем 100?
Можно ли из кубиков размером 1×1×1 склеить многогранник, площадь поверхности которого равна 2015? (Кубики приклеиваются так, что склеиваемые грани полностью примыкают друг к другу.)
Петя записал несколько алгебраических выражений, возвёл каждое из них в квадрат и сложил результаты.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 69] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|