|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На оси Ox произвольно расположены различные точки X1, ..., Xn, n ≥ 3. Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть y = f1(x), ..., y = fm(x) – соответствующие параболы. Докажите, что парабола y = f1(x) + ... + fm(x) пересекает ось Ox в двух точках. Натуральные числа A и B делятся на все натуральные числа от 1 до 65. На какое наименьшее натуральное число может не делиться число A + B? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]
В параллелограмме АВСD точка Е – середина стороны AD, точка F – основание перпендикуляра, опущенного из вершины В на прямую СЕ.
Натуральные числа A и B делятся на все натуральные числа от 1 до 65. На какое наименьшее натуральное число может не делиться число A + B?
У многочленов Р(х) и Q(х) – один и тот же набор целых коэффициентов (их порядок – различен).
Около единичного квадрата ABCD описана окружность, на которой выбрана точка М.
Решите в натуральных числах уравнение: x³ + y³ + 1 = 3xy.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|