ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

При каких a многочлен  P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)xa³  делится на  x – 1?

Вниз   Решение


Дан треугольник ABC. На сторонах AB, BC, CA взяты соответственно точки C1, A1, B1 так, что  AC1 : C1B = BA1 : A1C = CB1 : B1A = 1 : n.  На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2 так, что  A1C2 : C2B1 = B1A2 : A2C1 = C1B2 : B2A1 = n : 1.  Доказать, что  A2C2 || AC,  C2B2 || CB,   B2A2 || BA.

ВверхВниз   Решение


Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.

ВверхВниз   Решение


Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 65169

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 8,9

На рисунке изображен график функции  y = (a² – 1)(x² – 1) + (a – 1)(x – 1). Найдите координаты точки А.

Прислать комментарий     Решение

Задача 65170

Темы:   [ Четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 8,9,10,11

Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?

Прислать комментарий     Решение

Задача 65653

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.

Прислать комментарий     Решение

Задача 65654

Темы:   [ Четырехугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Прислать комментарий     Решение

Задача 65584

Тема:   [ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3-
Классы: 7,8,9

В выражении  x6 + x4 + xA  замените А на одночлен так, чтобы получился полный квадрат. Найдите как можно больше решений.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .