|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Неравенство
Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) >
где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0,
C > 0. Можно ли из отрезков a, b, c составить треугольник?
Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат? |
Страница: 1 [Всего задач: 5]
Можно ли раскрасить грани куба в три цвета так, чтобы каждый цвет присутствовал, но нельзя было увидеть одновременно грани всех трёх цветов, откуда бы мы ни взглянули на куб? (Одновременно можно увидеть только три любые грани, имеющие общую вершину.)
На стороне AB треугольника ABC отметили точки K и L так, что KL = BC и AK = LB.
Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?
На какое наименьшее количество квадратов можно разрезать лесенку из 15 ступеней (см. рисунок)? Резать можно только по границам клеток.
Дано 2n + 1 число (n – натуральное), среди которых одно число равно 0, два числа равны 1, два числа равны 2, ..., два числа равны n. Для каких n эти числа можно записать в одну строку так, чтобы для каждого натурального m от 1 до n между двумя числами, равными m, было расположено ровно m других чисел?
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|