|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы. Числа x, y, z и t лежат в интервале (0, 1). Докажите неравенство В треугольнике АВС точки М и N – середины сторон AC и ВС соответственно. Известно, что точка пересечения медиан треугольника AMN является точкой пересечения высот треугольника АВС. Найдите угол АВС. |
Страница: 1 2 >> [Всего задач: 6]
Если разделить 2014 на 105, то в частном получится 19 и в остатке тоже 19.
Докажите, что если в выражении (x² – x + 1)2014 раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.
В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны.
Каждый день, с понедельника по пятницу, ходил старик к синему морю и закидывал в море невод. При этом каждый день в невод попадалось не больше рыбы, чем в предыдущий. Всего за пять дней старик поймал ровно 100 рыбок. Какое наименьшее суммарное количество рыбок он мог поймать за три дня – понедельник, среду и пятницу?
В треугольнике АВС точки М и N – середины сторон AC и ВС соответственно. Известно, что точка пересечения медиан треугольника AMN является точкой пересечения высот треугольника АВС. Найдите угол АВС.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|