|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке. Напишите многочлены Tα и нарисуйте соответствующие им диаграммы Юнга для следующих наборов α В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°. Известно, что Толя поймал рыб больше, чем Коля, а Петя и Вася вместе поймали рыб столько же, сколько Коля и Толя вместе. Кроме того, Толя и Петя вместе поймали меньше, чем Вася и Коля. Кто из них поймал больше всех рыб, а кто – меньше всех? |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 69]
Дан многочлен P(x) с целыми коэффициентами. Известно, что Р(1) = 2013, Р(2013) = 1, P(k) = k, где k – некоторое целое число. Найдите k.
Найдите наибольшее значение выражения ab + bc + ac + abc, если a + b + c = 12 (a, b и с – неотрицательные числа).
Найдите наибольшее значение выражения х + у, если
Точка А лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), В – наиболее удалённая от неё точка на окружности нижнего основания, С – произвольная точка окружности нижнего основания. Найдите АВ, если АС = 12, BC = 5.
Известно, что Толя поймал рыб больше, чем Коля, а Петя и Вася вместе поймали рыб столько же, сколько Коля и Толя вместе. Кроме того, Толя и Петя вместе поймали меньше, чем Вася и Коля. Кто из них поймал больше всех рыб, а кто – меньше всех?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 69] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|