|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Квадратные трёхчлены f(x) и g(x) таковы, что
f '(x)g'(x) ≥ |f(x)| + |g(x)| при всех действительных x. Упростите выражение: Многоугольник M' гомотетичен многоугольнику M с коэффициентом гомотетии -1/2. Докажите, что существует параллельный перенос, переводящий многоугольник M' внутрь многоугольника M. Разложите на множители с действительными коэффициентами многочлены:
|
Страница: 1 2 3 >> [Всего задач: 13]
Разложите на множители с действительными коэффициентами многочлены:
Можно ли разложить на множители с целыми коэффициентами многочлен x4 + x3 + x2 + x + 12?
Докажите, что многочлен x4 + px2 + q всегда можно разложить в произведение двух многочленов второй степени.
Упростите выражение:
Докажите, что при нечетном m выражение (x + y + z)m – xm – ym – zm делится на (x + y + z)3 – x3 – y3 – z3.
Страница: 1 2 3 >> [Всего задач: 13] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|