|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если один выпуклый многоугольник лежит внутри другого, то периметр внутреннего многоугольника не превосходит периметра внешнего. Решите уравнение
| 2x -
Доказать, что произведение шести последовательных натуральных чисел не может быть равно 776965920. Найдите все значения параметра r, при которых уравнение (r – 4)x² – 2(r – 3)x + r = 0 имеет два корня, причём каждый из них больше –1. Найдите необходимое и достаточное условие для того, чтобы выражение x³ + y³ + z³ + kxyz делилось на x + y + z. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 141]
Найдите остаток от деления многочлена P(x) = x81 + x27 + x9 + x³ + x на
Докажите, что многочлен P(x) = (x + 1)6 – x6 – 2x – 1 делится на x(x + 1)(2x + 1).
Многочлен P(x) дает остаток 2 при делении на x – 1, и остаток 1 при делении на x – 2.
Найдите необходимое и достаточное условие для того, чтобы выражение x³ + y³ + z³ + kxyz делилось на x + y + z.
При каких n многочлен 1 + x² + x4 + ... + x2n–2 делится на 1 + x + x2 + ... + xn–1?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 141] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|