|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный. Дана прямая l и точки A и B, лежащие по одну сторону от нее. Постройте такую точку X прямой l, что AX + XB = a, где a — данная величина. Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
При каких x и y число xxyy является квадратом натурального числа?
Найдите все такие трёхзначные числа, которые в 12 раз больше суммы своих цифр.
Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9.
Двое пишут а) 30-значное; б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать?
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|