|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дано несколько выпуклых многоугольников, причем нельзя провести прямую так, чтобы она не пересекала ни одного многоугольника и по обе стороны от нее лежал хотя бы один многоугольник. Докажите, что эти многоугольники можно заключить в многоугольник, периметр которого не превосходит суммы их периметров. Рассмотрим число N, записанное в десятичной системе счисления. Найдём сумму цифр этого числа, потом сложим цифры, которыми записана сумма и т.д. Будем продолжать этот процесс, пока в конце концов не получим однозначное число, которое называют цифровым корнем числа N. Докажите, что цифровой корень сравним с N по модулю 9. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
Число N записано в десятичной системе счисления N =
Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25.
Найдите все числа вида xy9z, которые делятся на 132.
Найдите все числа вида 13xy45z, которые делятяс на 792.
Рассмотрим число N, записанное в десятичной системе счисления. Найдём сумму цифр этого числа, потом сложим цифры, которыми записана сумма и т.д. Будем продолжать этот процесс, пока в конце концов не получим однозначное число, которое называют цифровым корнем числа N. Докажите, что цифровой корень сравним с N по модулю 9.
Страница: 1 2 3 4 5 6 >> [Всего задач: 30] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|