ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число, у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
  a) Могут ли все числа стать нулями, если их 13 штук?   б) Могут ли все числа стать единицами, если их 14 штук?

Вниз   Решение


Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

ВверхВниз   Решение


В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

ВверхВниз   Решение


Пусть  a1, ..., a11  – различные натуральные числа, не меньшие 2, сумма которых равна 407.
Может ли сумма остатков от деления некоторого натурального числа n на 22 числа  a1, ..., a11, 4a1, 4a2, ..., 4a11  равняться 2012?

ВверхВниз   Решение


На олимпиаде m>1 школьников решали n>1 задач. Все школьники решили разное количество задач. Все задачи решены разным количеством школьников. Докажите, что один из школьников решил ровно одну задачу.

ВверхВниз   Решение


Некоторый алфавит состоит из 6 букв, которые для передачи по телеграфу кодированы так:

.          -          . .          - -          . -          -   .

При передаче одного слова не сделали промежутков, отделяющих букву от буквы, так что получилась сплошная цепочка из точек и тире, содержащая 12 знаков. Сколькими способами можно прочитать переданное слово?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 60560  (#03.108)

 [Задача Леонардо Пизанского]
Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9

Некто приобрел пару кроликов и поместил их в огороженный со всех сторон загон. Сколько кроликов будет через год, если считать, что каждый месяц пара дает в качестве приплода новую пару кроликов, которые со второго месяца жизни также начинают приносить приплод?

Прислать комментарий     Решение

Задача 60561  (#03.109)

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9

О том, как прыгают кузнечики. Предположим, что имеется лента, разбитая на клетки и уходящая вправо до бесконечности. На первой клетке этой ленты сидит кузнечик. Из любой клетки кузнечик может перепрыгнуть либо на одну, либо на две клетки вправо. Сколькими способами кузнечик может добраться до n-ой от начала ленты клетки?

Прислать комментарий     Решение

Задача 60562  (#03.110)

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9

Некоторый алфавит состоит из 6 букв, которые для передачи по телеграфу кодированы так:

.          -          . .          - -          . -          -   .

При передаче одного слова не сделали промежутков, отделяющих букву от буквы, так что получилась сплошная цепочка из точек и тире, содержащая 12 знаков. Сколькими способами можно прочитать переданное слово?

Прислать комментарий     Решение

Задача 60563  (#03.111)

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9

Чему равны числа Фибоначчи с отрицательными номерами F-1, F-2, ..., F-n,...?


Прислать комментарий     Решение

Задача 60564  (#03.112)

 [Тождество Кассини]
Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Тождество Кассини. Докажите равенство

Fn + 1Fn - 1 - Fn2 = (- 1)n        (n > 0).


Будет ли тождество Кассини справедливо для всех целых n?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .