ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дома у Олега есть сейф, но кода он не знает. Бабушка рассказала Олегу, что код состоит из 7 цифр – двоек и троек, причем двоек больше, чем троек. А дедушка – что код делится и на 3, и на 4. Сможет ли Олег с первой попытки открыть сейф?

Вниз   Решение


Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

ВверхВниз   Решение


Вершины многоугольника (не обязательно выпуклого) расположены в узлах целочисленной решетки. Внутри его лежит n узлов решетки, а на границе m узлов. Докажите, что его площадь равна n + m/2 - 1 (формула Пика).

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 58208  (#24.005)

Тема:   [ Теорема Пика ]
Сложность: 6
Классы: 9,10

Вершины многоугольника (не обязательно выпуклого) расположены в узлах целочисленной решетки. Внутри его лежит n узлов решетки, а на границе m узлов. Докажите, что его площадь равна n + m/2 - 1 (формула Пика).
Прислать комментарий     Решение


Задача 78839  (#24.005б)

Темы:   [ Ряд Фарея ]
[ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
[ Теорема Пика ]
Сложность: 4
Классы: 8,9,10,11

Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что  |bc – ad| = 1.

Прислать комментарий     Решение

Задача 58210  (#24.006)

Тема:   [ Теорема Пика ]
Сложность: 6
Классы: 9,10

Вершины треугольника ABC расположены в узлах целочисленной решетки, причем на его сторонах других узлов нет, а внутри его есть ровно один узел O. Докажите, что O — точка пересечения медиан треугольника ABC.
Прислать комментарий     Решение


Задача 58211  (#24.006б)

Тема:   [ Теорема Пика ]
Сложность: 6+
Классы: 9,10

Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек целочисленной решётки.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .