ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.

Вниз   Решение


Теннисист для тренировки играет каждый день хотя бы одну партию; при этом, чтобы не перетрудиться, он играет не более 12 партий в неделю.
Докажите, что можно найти несколько таких подряд идущих дней, в течение которых теннисист сыграл ровно двадцать партий.

ВверхВниз   Решение


Докажите, что если соответственные стороны выпуклых многоугольников A1...An и B1...Bn равны, причём многоугольник B1...Bn вписанный, то его площадь не меньше площади многоугольника A1...An.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 58129  (#22.BIs14)

Тема:   [ Теорема Хелли ]
Сложность: 7+
Классы: 8,9

Докажите, что площадь круга больше площади любой другой фигуры того же периметра. Другими словами, если площадь фигуры равна S, а её периметр равен P, то S$ \le$P2/4$ \pi$, причём равенство достигается только в случае круга (изопериметрическое неравенство).
Прислать комментарий     Решение


Задача 58130  (#22.BIs15)

Тема:   [ Теорема Хелли ]
Сложность: 7+
Классы: 8,9

Докажите, что если соответственные стороны выпуклых многоугольников A1...An и B1...Bn равны, причём многоугольник B1...Bn вписанный, то его площадь не меньше площади многоугольника A1...An.
Прислать комментарий     Решение


Задача 58131  (#22.BIs15a)

Тема:   [ Теорема Хелли ]
Сложность: 7+
Классы: 8,9

Несамопрересекающаяся ломаная расположена в данной полуплоскости, причём концы ломаной лежат на границе этой полуплоскости. Длина ломаной равна L, а площадь многоугольника, ограниченного ломаной и границей полуплоскости, равна S. Докажите, что S$ \le$L2/2$ \pi$.
Прислать комментарий     Решение


Задача 58132  (#22.BIs16)

Тема:   [ Теорема Хелли ]
Сложность: 7+
Классы: 8,9

Найдите кривую наименьшей длины, делящую равносторонний треугольник на две фигуры равной площади.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .